CODED DISTRIBUTED STORAGE FOR CLOUD ENVIRONMENTS

Maheswaran Sathiamoorthy
Data Centers

• Thousands of nodes under one roof.

• Failure is the norm rather than the exception.

• Need high reliability. Use some form of redundancy
 - Most data centers rely on 3x replication
 - Storage-redundancy = 3
 - But the amount of useful (logical) data that can be stored is only 33%
Goal

Given a fixed amount of storage, store as much logical data as possible, while maintaining high data reliability.

Can we do better than 33%?
Erasure Coding

- Erasure codes offer better storage redundancy for similar or higher reliability, but they generate a lot of repair traffic.

- Facebook encodes only 8% of data using (10,4) RS codes due to repair bottleneck.
- Reduce repair traffic ➞ more data erasure coded.
Storage/Network tradeoff

repair traffic required per block loss

○ (10, 4) Reed Solomon erasure code

(10, 6, 5) Locally Repairable code*

□ 3x replication

* Designed by Papailiopoulos et al.
HDFS-Xorbas (Hadoop implementation)

Experiments run over Amazon EC2 involving 100 nodes. Overall 2x reduction in Network and Disk I/O.
Block Placement

repair traffic required at the core per block loss

- erasure code, max-spreading

- erasure code, better placement?

Use Markov chains to model reliability for various placements to find the best. Ongoing work.
Conclusion

• To increase fraction of logical (useful) data stored:
 - Use erasure codes designed for Data Centers, such as Locally Repairable Codes.
 - Use better placement schemes to reduce repair traffic at the core.

• Savings can run into petabytes and thus tens of thousands of dollars.
Thank You
msathiam@usc.edu