Target Positioning Using TOA Measurements

Junyang Shen, Andreas F. Molisch
USC Ming Hsieh Department of Electrical Engineering
University of Southern California

Introduction

Radio Positioning can be divided into
1. Active Target: target transmits signals
2. Passive Target: target reflects signals
Applications of Passive Radio Positioning
• Localization of Survivors in Emergency Rescue
• Positioning of Intruders
Previous researches on passive positioning:
2. Time of arrival (TOA): No methods can approach CRLB.

Problem & Hypothesis

For small error, we can omit the second order items.

Since there are \(m \) equations like (4), they can be formulated in a matrix form as follows
\[
\mathbf{h} - \mathbf{S} = \mathbf{b}_e,
\]
where
\[
\mathbf{h} = \begin{bmatrix} a_1 h_1 - \hat{c}_1 \\ a_2 h_2 - \hat{c}_2 \\ \vdots \\ a_m h_m - \hat{c}_m \end{bmatrix},
\]
\[
\mathbf{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1n} \\ s_{21} & s_{22} & \cdots & s_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{m1} & s_{m2} & \cdots & s_{mn} \end{bmatrix},
\]
\[
\mathbf{b}_e = \begin{bmatrix} \hat{c}_1 \\ \hat{c}_2 \\ \vdots \\ \hat{c}_m \end{bmatrix}.
\]

Known Information
1. Locations of transmitter and receivers.
2. Signal travel ranges from the transmitter to the receivers.

Objective
- \(\Theta \) to be the target location.
- \(\hat{\Theta} \) to be the estimated location.

Estimation Criteria
- Minimum Square Error

Two Step Expectation Maximization (TSEM) Algorithm – Step 1

The measured signal travel ranges at the receivers are
\[
e = \sqrt{(x_a-x)^2 + (y_a-y)^2} = \text{Distance between Transmitter and Receiver}.
\]

With some manipulations, (1) can be rewritten as
\[
2a_x x_a + 2b_y y_a - 2r = \sqrt{(x-a)^2 + (y-b)^2} - r = \text{Distance between Targets}.
\]

Assume the range measurements are Gaussian distributed
\[
\mathbb{E}[e] = 0, \quad \text{var}(e) = \sigma_e^2.
\]

Substitute (3) into (2), we obtain
\[
\frac{a_x^2 + b_y^2}{2} + a_x x + b_y y - \sqrt{(x-a)^2 + (y-b)^2} = \mathbb{E}[e] = 0.
\]

Two Step Expectation Maximization (TSEM) Algorithm – Step 2

Construct a vector \(\mathbf{g} \) as follows
\[
\mathbf{g} = \Theta - \mathbf{G} \hat{\Theta}
\]
where
\[
\hat{\Theta} = (\hat{x}, \hat{y})^T, \quad \Theta = (x, y)^T
\]
and \(\mathbf{G} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

The optimum \(\hat{\Theta} \) is the one minimizing \((\Theta - \mathbf{G} \hat{\Theta})^T \Omega (\Theta - \mathbf{G} \hat{\Theta}) \), denoted by
\[
\hat{\Theta} = (\Theta - \mathbf{G} \hat{\Theta})^T \Omega (\Theta - \mathbf{G} \hat{\Theta}).
\]

Finally, the estimate of target location \((x, y) \) is obtained by
\[
\hat{x} = (x, y) = (x, y, \hat{\Theta}^T, \hat{\Theta}).
\]

The final result is the one of the four options in (13) minimizing the square error as follows
\[
x = \sum_{i=1}^{m} \sqrt{(x^2 + y^2) + \hat{c}_i (x^2 + y^2)}.
\]