Fully Automated Segmentation of Mitochondria Based on Morphological Feature Learning

Xue Wang¹, Jing Zhang¹, Chun-Nan Hsu², and C. –C Jay Kuo¹

¹ Dept. of Electrical Engineering, University of Southern California, ² Division of Biomedical Informatics, Univ. of California, San Diego

Characteristics of Mitochondria
- Dynamic organelles
- Fusion and fission processes
- Diverse morphological structures
- Correlated with important biological functions

Challenges
- Inhomogeneity in background intensity, signal-to-background ratio, and SNR
- Diversity of morphological structures

Proposed 2-stage Approach for Mitochondria Segmentation

- Pre-Processing
 - Image to non-overlapped patches

- Step 1. Input Data Grouping
 - R: Local Variance of Patch

- Step 2 & 3
 - Data grouping

- Step 4. Otsu’s Method

- Step 5. Connection of Break-outs
 - Predicted data
 - Hough Transform
 - de-Hough Transform

- Stage 1: Learning-based Segmentation
 - Pre-processing
 - Data grouping
 - Feature extraction
 - Logistic regression
 - Binarization

- Stage 2: Centerline Extraction
 - Combine results in Step 4 and Step 5

Conclusion
- 2-stage Approach for Mitochondria Segmentation
- Regression-based Mitochondrial Objectiveness Estimation
- Optimal-algorithm Based Centerline Extraction
- Automatic segmentations
- Reduce morphological errors