Identifiability Results for Ill-posed Bilinear Inverse Problems

Sunav Choudhary and Urbashi Mitra
Communication Sciences Institute

Main Message
- Identifiability crucial in inverse problems
- Not well understood for non-linear systems/constraints
- We develop theory for Bilinear Inverse Problems
- Subsumes blind estimation
- Deterministic characterization of identifiability
- Probabilistic scaling law
- General conic constraints included, e.g., sparsity and low rank constraints
- Connect blind estimation to low-rank matrix recovery
- Readily available convex relaxations

Introduction

Matrix Factorization
Given \(Z = XY \)
Find \((X, Y) \)
Subject to \(X_{ij}, Y_{jk} \geq 0 \)

Bilinear Map

\(S(x, y) \)
Linear Convolution: \(S(x, y) = x * y \)
\((m = 3, n = 4, p = m + n - 1 = 6)\)

Conic Constraint

\(K \)

\(x^T, S_k \)

\(S \)

Simulation Results

minimize \(\text{rank}(X) \)
subject to \(\|X - M\|_F \leq \epsilon \)
\(\mathcal{L}(X) = 0 \)
- Used Reweighted Nuclear Norm Heuristic
- Used Convolution Operator

Universal Identifiability

\(M \) is domain of ambiguity
\(M' = \{ Y - Z \mid Y, Z \in \mathcal{K}' \} \)
\(\mathcal{N}(\mathcal{L}, 2) \) is rank-2 null space

Instance Identifiability

\(M \) is identifiable
\(M_{id} \) is not identifiable
\(\mathcal{L}(\cdot) \) is null space
\(\mathcal{C}(\cdot) \) is column space

Exponential Scaling Law
- i.i.d. Gaussian/Bernoulli Inputs
- Probability of Identifiability =
 \(1 - \exp[C_1 \cdot p - C_2 \cdot (m + n)] \)
- \(p \) is DoF in rank-2 null space
- \(m, n \) are problem dimensions
- \(p = o(m + n) \) implies identifiability w.h.p.

References
- S. Choudhary and U. Mitra, On Identifiability in Bilinear Inverse Problems, ICASSP 2013

Sponsors: ONR N00014-09-1-0700, NSF CNS-0832186 and NSF CCF-1117896
email: s.choudhary@usc.edu
Web: http://www-scf.usc.edu/~sunavcho/